博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
整理篇
阅读量:6504 次
发布时间:2019-06-24

本文共 2487 字,大约阅读时间需要 8 分钟。

 

Making the Grade
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5797   Accepted: 2714

Description

A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).

You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is

|
A
1 -
B
1| + |
A
2 -
B
2| + ... + |
AN -
BN |

Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.

Input

* Line 1: A single integer: N

* Lines 2..N+1: Line i+1 contains a single integer elevation: Ai

Output

* Line 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation.

Sample Input

71324539

Sample Output

3

Source

/*解题思路整理--题意:花费最少代价使序列单调不下降或不上升 f[i,j]表示第i段路升高到是s[j],abs(h[i]-s[j])为原高度与ans对应高度的差 于是f[i,j]=min(f[i-1,k]+abs(h[i]-s[j]))(k<=j)o(n3)要tle的节奏。那么预处理--f[i-1,k]:开一个数组g[i,j]表示前i段路中升高到s[j]的最小花费,g[i,j]=min(g[i,j-1],f[i,j])。最终:f[i,j]=g[i-1,j]+abs[a[i]-c[j]]; o(n2)具体实现--sort s 正排一遍,倒排一遍 dp2遍--AC */#include
#include
#include
#include
#define N 2010using namespace std;int s[N],h[N],n,res=2137483648;int f[N][N],g[N][N];int cmp(int a,int b){ return a>b;}void dp(){ for(int i=1;i<=n;i++){ for(int j=1;j<=n;j++){ f[i][j]=g[i-1][j]+abs(h[i]-s[j]); if(j==1) g[i][j]=f[i][j]; else g[i][j]=min(g[i][j-1],f[i][j]); } } for(int i=1;i<=n;i++){ res=min(res,f[n][i]); }}int main(){ scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%d",h+i);s[i]=h[i]; } sort(s+1,s+n+1);dp(); sort(s+1,s+n+1,cmp);dp(); printf("%d\n",res); return 0;}

 

转载于:https://www.cnblogs.com/shenben/p/5513375.html

你可能感兴趣的文章
#pragma once和#ifndef的区别
查看>>
awk 的使用
查看>>
30问提升技术人写作力-第2问作业
查看>>
笔记——JS的对象复制
查看>>
Linux 系统进程 后台管理(基本操作)
查看>>
美好的时刻 -- Cross TheWorld With YouTogether(陪你路过这个世界)
查看>>
mysql错误代码对应含义
查看>>
JavaScript强化教程——Window Location
查看>>
虚拟机的安装创建和匿名everyone的互通访问
查看>>
TCP协议分析
查看>>
命令补全和别名
查看>>
配置Tomcat架构
查看>>
每隔2 个小时将/etc/services 文件打包备份到/tmp 下(最好每次备份成不同的备份包)...
查看>>
硬盘SMART检测参数详解[转]
查看>>
一篇文章助你理解Python2中字符串编码问题
查看>>
【运维安全】-Fiddler-抓包工具
查看>>
/etc/profile 记录用户登录IP
查看>>
VS2008 编译X64工程出现 error PRJ0003 : 生成 cmd.exe 时出错的解决方案
查看>>
Java 设计模式(1)
查看>>
jquery中的过滤操作
查看>>